Research Article
Optimizing Computer Worm Detection Using Ensembles
Algorithm 5
Gradient boosting.
| Inputs: | |
| (i) input data (x, y) Ni=1 | |
| (ii) number of iterations M | |
| (iii) choice of the loss-function (y, f) | |
| (iv) choice of the base-learner model h (x, θ) | |
| Algorithm: | |
| (1) initialize f0 with a constant | |
| (2) for t = 1 to M do | |
| (3) compute the negative gradient gt(x) | |
| (4) fit a new base-learner function h(x, θt) | |
| (5) find the best gradient descent step-size ρt : ρt = arg | |
| min ρ N i=1 yi, ft−1(xi) + ρh(xi, θt) | |
| (6) update the function estimate: ft ← ft−1 + ρth(x, θt) | |
| (7) end for |