Research Article

Employing a Machine Learning Approach to Detect Combined Internet of Things Attacks against Two Objective Functions Using a Novel Dataset

Table 3

Raw dataset.

NodeReceivedDupsLostHopsRtMetricETXChurnBeacon intervalRebootsCPU powerOn-timeListen duty cycleMax interpacket timeSimulation tMalicious/benignObjective function

1.10000.0000.0000.0000000.00000.000040m-rankandversionMRHOF
2.260013.0171040.18348.7711164526600.385977562540.872513800040m-rankandversionMRHOF
3.362011.000512.00016.0000164345100.40227901220.876811300040m-rankandversionMRHOF
4.459002.000773.05132.0000172371100.35437171600.748811300040m-rankandversionMRHOF
5.563001.143573.12719.0484160500000.42587871360.980611800040m-rankandversionMRHOF
6.661021.098537.18017.5742166745900.47157979661.017220400040m-rankandversionMRHOF
7.759012.000770.23732.0001166830500.40917223960.910311600040m-rankandversionMRHOF
8.859002.000771.57632.0590172481300.39587234830.799211600040m-rankandversionMRHOF
9.958002.000770.60332.0000172856800.44487131510.876611700040m-rankandversionMRHOF
10.159002.000774.18632.0000169052500.37496631580.77308300040m-rankandversionMRHOF
11.159003.0001036.54248.1670170149100.35737365720.774311500040m-rankandversionMRHOF
1.10000.0000.0000.0000000.000000.0000010b-rankandblackholeOF0
2.223003.0001024.00048.0000116791300.37942822830.797610400010b-rankandblackholeOF0
3.323001.000512.00016.0000109952100.38702774600.729811100010b-rankandblackholeOF0