Research Article

Combat Mobile Evasive Malware via Skip-Gram-Based Malware Detection

Table 1

Summary of related work.

ResearchAcc. (%)Dataset sizeMethodsFeature types

[8]94.426,093Boosted DTOpcode n-gram
[9]6948,000CNNOpcode word embedding
[9]982,123CNNOpcode word embedding
[10]9670,693CNNEmbedding
[11]9810,868KNNAPI call sequence opcode skip-gram CBOW
[13]97.7110,438MLP + LSTMAPK XML opcode embedding
[14]9819,979XGBoostSkip-gram-based opcode n-gram
[18]9759,749SVMHIN metagraph2vec
[19]98Multiview NNSkip-gram
[20]99190,696HG learningAPI call graph heterogeneous graph
[21]9114,416Clustering + DNNSkip-gram CBOW
[22]97.492520SVMSkip-gram
[23]98.8658,139DNNAPI call graph skip-gram