Research Article

cHybriDroid: A Machine Learning-Based Hybrid Technique for Securing the Edge Computing

Table 1

A summary of related work.

ReferencesMethodologyUsed feature
StaticDynamicHybridML-basedStaticDynamicData set

Feizollah et al. [10]PermissionCustom | Drebin
Almin et al. [5]IntentsCustom
Canfora et al. [8]System callsCustom | Drebin
Wong et al. [4]Malware tracking through input Genera-Custom | Drebin
Youngjoon et al. [11]API callsCustom
Alzaylaee et al. [2]API callsMalgenome data set
Zhao et al. [12]PermissionsGeneral dynamic activities trigged byCustom
Dash et al. [13]System calls, Decoded binder communication, abstracted behavioural patternsCustom
Xu et al. [14]Collect attack tree pathGraph kernelsCustom
Yuan et al. [15]Permissions, sensitive APIDexClass, receive net service startCustom
Wang et al. [16]Permissions, API calls, hardware features, code patternsCustom
Kim et al. [17]Opcode, API, permissions, component, and environmental and string featuresCustom | malgenome data set
Karbab et al. [18]API method callsDrebin | malgenome | virushare | contagio minidump
Arshad S et al. [19]Hardware components requested per missions, application components, and API calls.System callsDrebin
Hou et al. [20]Linux kernel system callsCustom
Pektas and Acarman [21]Permissions and hidden payloadAPI calls, installed services, network connectionsVirushare