Research Article

cHybriDroid: A Machine Learning-Based Hybrid Technique for Securing the Edge Computing

Table 12

The summary of results with and without feature selection.

(a) Static features results(b) Dynamic features results(c) Hybrid feature results
F-meas.Prec.RecallF-meas.Prec.RecallF-meas.Prec.Recall

WO Feat. Sel.
SVM0.900.900.910.900.900.920.931.000.89
Decision tree0.830.840.840.840.850.840.880.960.83
Random forest0.890.850.830.890.860.840.960.980.93
K-star0.840.910.80.850.920.800.571.000.42
Naive Bayes0.850.980.750.850.990.750.991.000.99
TPOT0.910.920.910.940.980.900.991.000.99

With feat. sel.
SVM0.860.860.880.900.940.870.951.000.91
Decision tree0.870.860.890.910.950.870.910.970.87
Random forest0.880.880.890.900.940.870.950.960.95
K-star0.840.770.940.830.830.870.841.000.74
Naive Bayes0.790.680.940.830.970.730.961.000.93
TPOT0.870.870.880.910.940.890.971.000.94