Research Article

cHybriDroid: A Machine Learning-Based Hybrid Technique for Securing the Edge Computing

Table 13

The selected best model in terms of cross-validation score.

k = 1k = 2k = 3k = 4k = 5k = 6k = 7k = 8k = 9k = 10Average

(a) Static features
TPOT, without feature selection
F-measure0.920.820.820.970.930.860.970.921.000.930.91
Precision1.000.750.751.000.901.001.000.951.000.900.93
Recall0.850.900.900.950.950.750.950.901.000.950.91
Random forest, with feature selection
F-measure0.920.740.860.930.850.830.970.930.970.840.89
Precision0.950.650.790.900.840.931.000.900.950.890.88
Recall0.900.850.950.950.850.750.950.950.950.800.89

(b) Dynamic features
TPOT, without feature selection
F-measure0.900.900.970.850.790.971.001.001.001.000.94
Precision1.000.931.000.911.001.001.001.001.001.000.98
Recall0.870.930.730.670.801.001.001.001.001.000.90
TPOT, with feature selection
F-measure0.890.900.930.670.840.930.971.001.001.000.91
Precision1.000.931.000.750.810.931.001.001.001.000.94
Recall0.800.870.870.600.870.930.931.001.001.000.89

(c) Hybrid features
Native Bayes, with feature selection
F-measure0.931.001.001.001.001.001.001.001.001.000.99
Precision1.001.001.001.001.001.001.001.001.001.001.00
Recall0.881.001.001.001.001.001.001.001.001.000.99
TPOT, with feature selection
F-measure0.931.001.000.920.920.921.001.001.001.000.97
Precision1.001.001.001.001.001.001.001.001.001.001.00
Recall0.881.001.000.860.860.861.001.001.001.000.94