Research Article
cHybriDroid: A Machine Learning-Based Hybrid Technique for Securing the Edge Computing
Table 13
The selected best model in terms of cross-validation score.
| | k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | k = 6 | k = 7 | k = 8 | k = 9 | k = 10 | Average |
| (a) Static features | TPOT, without feature selection | | | | | | | | | | | | F-measure | 0.92 | 0.82 | 0.82 | 0.97 | 0.93 | 0.86 | 0.97 | 0.92 | 1.00 | 0.93 | 0.91 | Precision | 1.00 | 0.75 | 0.75 | 1.00 | 0.90 | 1.00 | 1.00 | 0.95 | 1.00 | 0.90 | 0.93 | Recall | 0.85 | 0.90 | 0.90 | 0.95 | 0.95 | 0.75 | 0.95 | 0.90 | 1.00 | 0.95 | 0.91 | Random forest, with feature selection | | | | | | | | | | | | F-measure | 0.92 | 0.74 | 0.86 | 0.93 | 0.85 | 0.83 | 0.97 | 0.93 | 0.97 | 0.84 | 0.89 | Precision | 0.95 | 0.65 | 0.79 | 0.90 | 0.84 | 0.93 | 1.00 | 0.90 | 0.95 | 0.89 | 0.88 | Recall | 0.90 | 0.85 | 0.95 | 0.95 | 0.85 | 0.75 | 0.95 | 0.95 | 0.95 | 0.80 | 0.89 |
| (b) Dynamic features | TPOT, without feature selection | | | | | | | | | | | | F-measure | 0.90 | 0.90 | 0.97 | 0.85 | 0.79 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | Precision | 1.00 | 0.93 | 1.00 | 0.91 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | Recall | 0.87 | 0.93 | 0.73 | 0.67 | 0.80 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | TPOT, with feature selection | | | | | | | | | | | | F-measure | 0.89 | 0.90 | 0.93 | 0.67 | 0.84 | 0.93 | 0.97 | 1.00 | 1.00 | 1.00 | 0.91 | Precision | 1.00 | 0.93 | 1.00 | 0.75 | 0.81 | 0.93 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | Recall | 0.80 | 0.87 | 0.87 | 0.60 | 0.87 | 0.93 | 0.93 | 1.00 | 1.00 | 1.00 | 0.89 |
| (c) Hybrid features | Native Bayes, with feature selection | | | | | | | | | | | | F-measure | 0.93 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | Precision | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | Recall | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | TPOT, with feature selection | | | | | | | | | | | | F-measure | 0.93 | 1.00 | 1.00 | 0.92 | 0.92 | 0.92 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | Precision | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | Recall | 0.88 | 1.00 | 1.00 | 0.86 | 0.86 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 |
|
|