Research Article

Identifying IoT Devices Based on Spatial and Temporal Features from Network Traffic

Table 6

The structure of Conv-BiLSTM.

HyperparametersValueActivation function

Conv-BiLSTMConv2D#filters = 6, filter size = 5ReLU
MaxPlooing2D#pool size = 2, padding = “valid”
Conv2D#filters = 16, filter size = 5ReLU
MaxPlooing2D#pool size = 2, padding = “valid”
Flatten
Dense#neurons = 1600, dropout = 0.5ReLU
BiLSTM#neurons = 512, dropout = 0.3Sigmoid
BiLSTM#neurons = 512, dropout = 0.3Sigmoid
Dense#neurons = 18/23Softmax
Optimizer#Adam with learning rate = 0.001
Loss function#Categorical_crossentropy
Batch size#512
Epochs#50