Research Article
Identifying IoT Devices Based on Spatial and Temporal Features from Network Traffic
Table 9
Performance comparison of different model combinations.
| Method | Accuracy | Precision | Recall | F1-score |
| CNN | UNSW dataset | 0.9464 | 0.8919 | 0.8858 | 0.8872 | Laboratory dataset | 0.9302 | 0.9026 | 0.8774 | 0.8877 |
| FGAN + CNN | UNSW dataset | 0.9517 | 0.8990 | 0.8963 | 0.8950 | Laboratory dataset | 0.9463 | 0.9081 | 0.8925 | 0.8989 |
| BiLSTM | UNSW dataset | 0.9465 | 0.8897 | 0.8800 | 0.8812 | Laboratory dataset | 0.9382 | 0.8875 | 0.8581 | 0.8664 |
| FGAN + BiLSTM | UNSW dataset | 0.9541 | 0.9059 | 0.8882 | 0.8906 | Laboratory dataset | 0.9478 | 0.8900 | 0.8671 | 0.8754 |
| CNN + BiLSTM | UNSW dataset | 0.9865 | 0.9325 | 0.8865 | 0.9039 | Laboratory dataset | 0.9524 | 0.9033 | 0.8752 | 0.8850 |
| FGAN + CNN + BiLSTM (CBBI) | UNSW dataset | 0.9983 | 0.9958 | 0.9914 | 0.9935 | Laboratory dataset | 0.9726 | 0.9651 | 0.9652 | 0.9649 |
|
|