Research Article

Identifying IoT Devices Based on Spatial and Temporal Features from Network Traffic

Table 9

Performance comparison of different model combinations.

MethodAccuracyPrecisionRecallF1-score

CNNUNSW dataset0.94640.89190.88580.8872
Laboratory dataset0.93020.90260.87740.8877

FGAN + CNNUNSW dataset0.95170.89900.89630.8950
Laboratory dataset0.94630.90810.89250.8989

BiLSTMUNSW dataset0.94650.88970.88000.8812
Laboratory dataset0.93820.88750.85810.8664

FGAN + BiLSTMUNSW dataset0.95410.90590.88820.8906
Laboratory dataset0.94780.89000.86710.8754

CNN + BiLSTMUNSW dataset0.98650.93250.88650.9039
Laboratory dataset0.95240.90330.87520.8850

FGAN + CNN + BiLSTM (CBBI)UNSW dataset0.99830.99580.99140.9935
Laboratory dataset0.97260.96510.96520.9649