Research Article

Personalized Federated Learning with Semisupervised Distillation

Algorithm 3

Client update.
Input: communication round , local labeled data , local unlabeled data and public data for each client k, number of local epochs , batch size of labeled data, batch size of public data, batch size of unlabeled data, confidence threshold , learning rate , loss weight and
Output: model’s predicted class distribution Initialize the local model
split into batches of size
split into batches of size
ifthen
  for each local epoch e = 0, 1, 2, …, E − 1 do
   for each batch , and do
    Compute by equation (1)
    
   end
  end
else
  for each local epoch e = 0, 1, 2, …, E − 1 do
   for each batch , and do
    Compute by equations (6)–(9)
    
   end
  end
end
 return to server