Research Article

Detecting Portable Executable Malware by Binary Code Using an Artificial Evolutionary Fuzzy LSTM Immune System

Table 2

Performance metrics.

Correctly classified instances1934498.59%

Incorrectly classified instances27601.41%

Weighted average

MethodAccuracyTP ratePrecisionRecallF1-scoreMCCROC areaPRC areaMAERMSEK stats

Proposed98.59%0.9860.9860.9860.9860.9710.9870.9810.01410.11670.9714
SVM92.91%0.9290.9300.9300.9300.9350.9600.9650.02050.12330.9398
NaBayes88.38%0.8840.8840.8850.8850.8840.8900.8900.03180.20340.8904
k-NN90.63%0.9060.9000.9000.9100.9000.9000.9500.02970.12930.9008
RF97.03%0.9700.9700.9700.9700.9650.9700.9720.01700.11950.9682

SVM = support vector machines; NaBayes = naïve Bayes k-NN = k nearest neighbor; RF = random forest; TP rate = true positive rate; FP rate = false positive rate; MCC = Matthews correlation coefficient; ROC area = receiver operating characteristic area; PRC area = Precision-Recall curve area; MAE = mean absolute error; RMSE = root mean square error.