Research Article

[Retracted] How Does the Urgency of Borrowing in Text Messages Affect Loan Defaults? Evidence from P2P Loans in China

Table 14

Logical regression results of loan description text variables and overall text variables.

VarModel 2Model 3Model 4Model 5Model 6Model 7
DefaultDefaultDefaultDefaultDefaultDefault

C−2.415−2.332−2.607−2.612−2.393−2.557
(0.007)(0.708)(0.712)(0.707)(0.705)(0.726)

Length−0.007−0.008
(−0.001)(0.001)

Ability−0.0600.06
(0.074)0 (.077)

Willingness−0.116−0.021
(0.069)(0.071)

Purp 10.1790.087
(0.138)(0.235)

Purp 20.4720.462
(0.133)(0.135)

Purp 30.2780.224
(0.129)(0.131)

Purp 40.5690.532
(0.163)(0.164)

Urgency0.0490.037
(0.300)(0.235)

ControlsYESYESYESYESYESYES
Nagelkerke R20.6950.6930.6940.6960.6930.697
N407340734073407340734073

Note: the symbols , , and indicate significance at the 10%, 5%, and 1% levels, respectively.