Research Article
FCNN: An Efficient Intrusion Detection Method Based on Raw Network Traffic
| | Sequence | Description |
| | 1 | Convolution layer (48 units, kernel size: 3, activation function: ReLU) | | 2 | Dropout layer (dropout rate: 0.1) | | 3 | Convolution layer (48 units, kernel size: 3, activation function: ReLU) | | 4 | Pooled layer (size: 2) | | 5 | Convolution layer (128 units, kernel size: 3, activation function: ReLU) | | 6 | Dropout layer (dropout rate: 0.1) | | 7 | Convolution layer (128 units, kernel size: 3, activation function: ReLU) | | 8 | Pooled layer (size: 2) | | 9 | Flatten layer | | 10 | Dense layer (128 units, kernel size: 3, activation function: ReLU) | | 11 | Dropout layer (dropout rate: 0.1) | | 12 | Dense layer (1 unit, activation function: sigmoid) |
|
|