Research Article

Differential Privacy Principal Component Analysis for Support Vector Machines

Algorithm 2

Principal component analysis-differential privacy support vector machine (PCA-DPSVM).
 Input: data , samples n, attributes d, privacy budget ;
 Output: noised classification decision function
(1)Compute covariance matrix of input data ;
(2)Compute eigenvalues and corresponding eigenvectors of the covariance matrix ;
(3)Select first k eigenvectors to determine the low-dimensional data ;
(4)Compute classification function ;
(5)Add noise