Research Article
I2DS: Interpretable Intrusion Detection System Using Autoencoder and Additive Tree
Table 7
Comparison of the proposed model and other classifiers with UNSW-NB15.
| Classifier | Accuracy | Precision | Recall | F1-score |
| IGAN-IDS [9] | 0.8253 | 0.8486 | 0.8445 | 0.8286 | NADS-RA [10] | 0.9490 | 0.9820 | 0.9250 | 0.9530 | CWGAN-CSSAE [11] | 0.9327 | 0.9259 | 0.9543 | 0.9399 | HNGFA [21] | 0.9024 | 0.9277 | 0.8248 | 0.8536 | RHF-ANN [22] | 0.9760 | 0.9550 | 0.9990 | 0.9770 | GA + SVM [23] | 0.9610 | 0.9830 | 0.9820 | 0.9820 | SVM + EML + K-means [24] | 0.9450 | 0.9480 | 0.9970 | 0.9720 | Wrapper + neurotree [25] | 0.9710 | 0.9500 | 0.9830 | 0.9660 | HC-IBGSA + SVM [26] | 0.9847 | — | — | — | MINDFUL [27] | 0.9340 | — | — | 0.9529 | I2DS (our proposed model) | 0.9995 | 0.9994 | 0.9999 | 0.9996 |
|
|