Research Article

Real-Time Surveillance Using Deep Learning

Table 3

Detailed results of training and testing for various object detectors.

Object detectorCNN feature extractorsNo. of training imagesTrain-set APTime to train in hoursNo. of testing imagesTest-set AP

SqueezeNet-based FasterRCNNFace18050.2213.866950.23
Weapon17000.2112.955500.20
Guard16000.2811.805000.25
Intruder15500.2011.565000.18

GoogleNet-based FasterRCNNFace18050.9625.086950.97
Weapon17000.9423.335500.96
Guard16000.9722.015000.95
Intruder15500.8021.645000.79

ResNet-18-based FasterRCNNFace18050.9717.016950.97
Weapon17000.9515.235500.94
Guard16000.9614.855000.93
Intruder15500.7914.665000.83

ResNet-50-based FasterRCNNFace18050.9747.016950.98
Weapon17000.9645.205500.97
Guard16000.9744.095000.96
Intruder15500.8142.775000.85