Research Article
Real-Time Surveillance Using Deep Learning
Table 3
Detailed results of training and testing for various object detectors.
| Object detector | CNN feature extractors | No. of training images | Train-set AP | Time to train in hours | No. of testing images | Test-set AP |
| SqueezeNet-based FasterRCNN | Face | 1805 | 0.22 | 13.86 | 695 | 0.23 | Weapon | 1700 | 0.21 | 12.95 | 550 | 0.20 | Guard | 1600 | 0.28 | 11.80 | 500 | 0.25 | Intruder | 1550 | 0.20 | 11.56 | 500 | 0.18 |
| GoogleNet-based FasterRCNN | Face | 1805 | 0.96 | 25.08 | 695 | 0.97 | Weapon | 1700 | 0.94 | 23.33 | 550 | 0.96 | Guard | 1600 | 0.97 | 22.01 | 500 | 0.95 | Intruder | 1550 | 0.80 | 21.64 | 500 | 0.79 |
| ResNet-18-based FasterRCNN | Face | 1805 | 0.97 | 17.01 | 695 | 0.97 | Weapon | 1700 | 0.95 | 15.23 | 550 | 0.94 | Guard | 1600 | 0.96 | 14.85 | 500 | 0.93 | Intruder | 1550 | 0.79 | 14.66 | 500 | 0.83 |
| ResNet-50-based FasterRCNN | Face | 1805 | 0.97 | 47.01 | 695 | 0.98 | Weapon | 1700 | 0.96 | 45.20 | 550 | 0.97 | Guard | 1600 | 0.97 | 44.09 | 500 | 0.96 | Intruder | 1550 | 0.81 | 42.77 | 500 | 0.85 |
|
|