Research Article

S-DPS: An SDN-Based DDoS Protection System for Smart Grids

Table 2

Entropy-based approaches.

YearTechniqueAnomalies addressedDatasetData sourceSource toolFlow properties for anomaly detectionComparisonValidation metrics (%)Conclusion

2016 [21]Generalized entropyDDoS, probeReal:
KDDcup99, NSL-KDD, UCI machine learning repository datasets Simulated:
Testbed dataset (TUIDS) for DDoS and probe attacks
IP packet/IP flowNetflow dataDynamic selection of features through mutual information and GELOF for τ = 0.58 at dataset ZooDR = 82.35
FPR = 19.04
Proposed approach achieved better DR and FPR metrics compared to other outlier approaches
ORCADR = 88.23
FPR = 13.09
Proposed approachDR = 94.11
FPR = 2.38
Shannon entropyDR = 55
FPR = 15
Kullback–Leblier divergenceDR = 70
FPR = 15
2015 [22]Extended entropyDDoS, port scan, network scan, DoS, worm, and spamLegitimate traffic from tsinghua University Campus networkIP flowNetflowSource IP address, source port, destination IP, address, destination port, flow byte, flow direction, protocol number, and TCP control bitDR = 93.46
FPR = 5
2015
2017 [23]Tsallis entropyReal and simulated versions: DDoS, alpha flow, port scan, network scanReal
Campus network data, i.e., UTFPR/Toleda Campus and FISTSC/GW campus
IP flowNetflow v9Source address, destination address, source port, destination port, number of packets, number of flows, number of bytes, in-degreeTsallis entropyDR = 100
FPR = 1
Achieved better DR and FPR compared to Shannon entropy validation metrics dropped a little with sampling effects
Shannon entropyDR = 25
FPR = 2.2806
After incorporating sampling effects in techniqueDR = 99.45
FPR = 0.12