Research Article
Bitcoin Theft Detection Based on Supervised Machine Learning Algorithms
Table 2
Experimental results corresponding to various settings.
| | | | Acc (%) | Recall (%) | Pre (%) | F1 (%) |
| A | Unsupervised | LOF | 89.5 | 0.0 | 0.0 | — | OCSVM | 82.8 | 0.5 | 0.2 | 0.3 | MDB | 89.6 | 0.5 | 0.6 | 0.6 | Supervised | KNN | 95.5 | 62.2 | 58.7 | 60.4 | SVM | 94.5 | 0.0 | 0.0 | — | RF | 95.5 | 56.3 | 59.1 | 57.7 | AdaBoost | 95.7 | 52.9 | 62.3 | 57.2 | MLP | 94.5 | 0.0 | 0.0 | — |
| B | Unsupervised | LOF | 89.6 | 0.5 | 0.6 | 0.6 | OCSVM | 89.7 | 0.0 | 0.0 | — | MDB | 89.5 | 0.0 | 0.0 | — | Supervised | KNN | 98.5 | 84.8 | 87.4 | 86.1 | SVM | 94.5 | 0.0 | 0.0 | — | RF | 99.4 | 92.4 | 98.1 | 95.2 | AdaBoost | 99.3 | 93.6 | 94.7 | 94.1 | MLP | 94.4 | 0.0 | 0.0 | — |
| C | Supervised | KNN | 97. 6 | 92. 4 | 72. 2 | 81. 1 | SVM | 50. 1 | 90. 1 | 9. 0 | 16. 3 | RF | 99. 5 | 95. 9 | 95. 9 | 95. 9 | AdaBoost | 98. 7 | 97. 0 | 82. 6 | 89. 3 | MLP | 95. 9 | 93. 0 | 57. 9 | 71. 4 |
|
|