Research Article

Attribution Classification Method of APT Malware in IoT Using Machine Learning Techniques

Table 3

Classification results of each model on each APT organization.

APT organizationEvaluationKNNDTXGBSMOTE-RF

Lazarus groupPrecision0.7910.7500.8000.845
Recall0.5070.4930.4780.567
F-score0.6180.5950.5980.644

APT28Precision0.3600.3510.3550.366
Recall0.8540.8330.7920.854
F-score0.5060.4940.4900.513

Operation C-MajorPrecision0.8890.8890.8890.889
Recall0.8280.8280.8280.828
F-score0.8570.8570.8570.857

APT29Precision0.9370.9380.9120.968
Recall0.8250.8390.8570.834
F-score0.8770.8860.8840.896

Dropping ElephantPrecision0.9270.9800.9440.927
Recall0.8360.8360.8360.836
F-score0.8790.9030.8870.879

SandwormPrecision0.8400.9171.01.0
Recall0.8080.8460.8460.885
F-score0.8240.8800.9170.939

NaikonPrecision0.9130.9570.9170.957
Recall0.7000.7330.7330.733
F-score0.7920.8300.8150.830