Research Article

[Retracted] Classification and Prediction of Software Incidents Using Machine Learning Techniques

Table 5

Summary of K-mean clustering.

k-Means
======
Number of iterations: 4
Within cluster sum of squared errors: 186.97500542403395
Initial starting points (random):
Cluster 0: “7/20/2017 23:10”“App-configuration failed”7009None
Cluster 1: “7/18/2017 23:09”“Need updation”6008None
Cluster 2: “7/20/2017 23:34”“Ending window installer transaction”37−7
Missing values globally replaced with mean/mode
Final cluster centroids:
Clusters #
AttributeFull dataCluster 0Cluster 1Cluster 2
(100)(21.0)(41.0)(38.0)
Date and time7/17/2017 12:077/21/2017 11:157/17/2017 12:077/20/2017 23:34
SourceSoftware protection service failedApp configuration failedSoftware protection service failedRtop service failed
Event ID2204.016617.42861477.0244549.3947
Task categoryNoneNoneNone−212
Time taken to build the model (full training data): 0.02 seconds