Research Article
A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection
Table 6
Performance of different methods on the NSL-KDD dataset.
| ā | SMOTE | ADASYN | K-SMOTE | G-SMOTE | ACGAN-SVM | GAN | Proposed |
| NB | Acc | 0.8475 | 0.8090 | 0.8246 | 0.8027 | 0.7595 | 0.7771 | 0.8052 | F1 | 0.8552 | 0.8132 | 0.8307 | 0.7973 | 0.7395 | 0.7600 | 0.7993 |
| DT | Acc | 0.7856 | 0.7583 | 0.7736 | 0.8101 | 0.7983 | 0.7646 | 0.8092 | F1 | 0.7746 | 0.7392 | 0.7624 | 0.8047 | 0.7946 | 0.7564 | 0.8451 |
| RF | Acc | 0.7571 | 0.7494 | 0.7837 | 0.7822 | 0.7571 | 0.7618 | 0.8293 | F1 | 0.7363 | 0.7249 | 0.7715 | 0.7694 | 0.7365 | 0.7424 | 0.8635 |
| GBDT | Acc | 0.7800 | 0.7780 | 0.7840 | 0.7749 | 0.7741 | 0.7785 | 0.8328 | F1 | 0.7751 | 0.7646 | 0.7774 | 0.7684 | 0.7686 | 0.7737 | 0.8669 |
| SVM | Acc | 0.8080 | 0.8025 | 0.7821 | 0.8407 | 0.7781 | 0.7798 | 0.7555 | F1 | 0.8023 | 0.7963 | 0.7686 | 0.8425 | 0.7632 | 0.7654 | 0.7918 |
| K-NN | Acc | 0.7924 | 0.7890 | 0.7921 | 0.7921 | 0.7758 | 0.7758 | 0.7985 | F1 | 0.7823 | 0.7812 | 0.7821 | 0.7835 | 0.7599 | 0.7599 | 0.7921 |
| ANN | Acc | 0.7661 | 0.7850 | 0.7802 | 0.7850 | 0.7625 | 0.7587 | 0.7924 | F1 | 0.7577 | 0.7865 | 0.7759 | 0.7814 | 0.7455 | 0.7377 | 0.7931 |
|
|