Research Article

A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection

Table 7

Performance of different methods on the UNSW-NB15 dataset.

 SMOTEADASYNK-SMOTEG-SMOTEACGAN-SVMGANProposed

NBAcc0.72410.73780.72650.72280.72460.72430.7121
F10.76270.77190.76430.76190.76280.76290.7550

DTAcc0.89040.88370.65340.88540.87790.72690.8877
F10.91560.91100.66700.91120.90400.75690.9162

RFAcc0.90770.89930.88200.90970.88720.86290.8857
F10.92950.92290.90900.93130.91090.88960.9137

GBDTAcc0.90860.92000.88700.89970.88620.88470.9278
F10.93080.94080.91460.92320.91010.90880.9490

SVMAcc0.89370.90980.86790.89930.83020.83090.9205
F10.91710.93140.89540.92200.86820.86880.9433

K-NNAcc0.87230.87380.87440.86940.86660.86660.8824
F10.89830.89970.90020.89560.89310.89310.9080

ANNAcc0.86300.75830.73970.87800.83250.87120.9032
F10.88930.78480.76490.90280.86160.89700.9270