Research Article
A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection
Table 7
Performance of different methods on the UNSW-NB15 dataset.
| ā | SMOTE | ADASYN | K-SMOTE | G-SMOTE | ACGAN-SVM | GAN | Proposed |
| NB | Acc | 0.7241 | 0.7378 | 0.7265 | 0.7228 | 0.7246 | 0.7243 | 0.7121 | F1 | 0.7627 | 0.7719 | 0.7643 | 0.7619 | 0.7628 | 0.7629 | 0.7550 |
| DT | Acc | 0.8904 | 0.8837 | 0.6534 | 0.8854 | 0.8779 | 0.7269 | 0.8877 | F1 | 0.9156 | 0.9110 | 0.6670 | 0.9112 | 0.9040 | 0.7569 | 0.9162 |
| RF | Acc | 0.9077 | 0.8993 | 0.8820 | 0.9097 | 0.8872 | 0.8629 | 0.8857 | F1 | 0.9295 | 0.9229 | 0.9090 | 0.9313 | 0.9109 | 0.8896 | 0.9137 |
| GBDT | Acc | 0.9086 | 0.9200 | 0.8870 | 0.8997 | 0.8862 | 0.8847 | 0.9278 | F1 | 0.9308 | 0.9408 | 0.9146 | 0.9232 | 0.9101 | 0.9088 | 0.9490 |
| SVM | Acc | 0.8937 | 0.9098 | 0.8679 | 0.8993 | 0.8302 | 0.8309 | 0.9205 | F1 | 0.9171 | 0.9314 | 0.8954 | 0.9220 | 0.8682 | 0.8688 | 0.9433 |
| K-NN | Acc | 0.8723 | 0.8738 | 0.8744 | 0.8694 | 0.8666 | 0.8666 | 0.8824 | F1 | 0.8983 | 0.8997 | 0.9002 | 0.8956 | 0.8931 | 0.8931 | 0.9080 |
| ANN | Acc | 0.8630 | 0.7583 | 0.7397 | 0.8780 | 0.8325 | 0.8712 | 0.9032 | F1 | 0.8893 | 0.7848 | 0.7649 | 0.9028 | 0.8616 | 0.8970 | 0.9270 |
|
|