Research Article
A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection
Table 8
Performance of different methods on the CICIDS-2017 dataset.
| ā | SMOTE | ADASYN | K-SMOTE | G-SMOTE | ACGAN-SVM | GAN | Proposed |
| NB | Acc | 0.6652 | 0.6816 | 0.7238 | 0.7543 | 0.7263 | 0.7227 | 0.7239 | F1 | 0.4854 | 0.2653 | 0.3105 | 0.4425 | 0.4836 | 0.4797 | 0.4806 |
| DT | Acc | 0.9393 | 0.9585 | 0.9459 | 0.2490 | 0.9746 | 0.9721 | 0.9770 | F1 | 0.8220 | 0.8895 | 0.8454 | 0.3414 | 0.9331 | 0.9264 | 0.9397 |
| RF | Acc | 0.9969 | 0.9950 | 0.9684 | 0.5847 | 0.9692 | 0.9703 | 0.9984 | F1 | 0.9921 | 0.9872 | 0.9130 | 0.4856 | 0.9154 | 0.9187 | 0.9960 |
| GBDT | Acc | 0.9921 | 0.9947 | 0.9928 | 0.9779 | 0.9888 | 0.9719 | 0.9962 | F1 | 0.9801 | 0.9867 | 0.9817 | 0.9468 | 0.9710 | 0.9333 | 0.9902 |
| K-NN | Acc | 0.9839 | 0.9823 | 0.9850 | 0.9694 | 0.9847 | 0.9830 | 0.9819 | F1 | 0.9599 | 0.9562 | 0.9622 | 0.9267 | 0.9615 | 0.9613 | 0.9549 |
| ANN | Acc | 0.8161 | 0.3498 | 0.8925 | 0.5665 | 0.9294 | 0.9227 | 0.9667 | F1 | 0.6811 | 0.3774 | 0.7153 | 0.4334 | 0.8185 | 0.8311 | 0.9189 |
|
|