Research Article
[Retracted] Gradient Descent Optimization in Deep Learning Model Training Based on Multistage and Method Combination Strategy
Table 14
Performance of the proposed method, RMSprop with decay.
| | ResNet-20 on Cafri-10 | LSTM on IMDB | Val-loss | Val-acc | Val-loss | Val-acc |
| (RMSprop + d) + SGD | 0.6149 | 0.8464 | 0.4872 | 0.8338 | (RMSprop + d) + (SGD + d) | 0.9866 | 0.7530 | 0.5555 | 0.8289 | (RMSprop + d) + (SGD + M) | 0.6012 | 0.8493 | 0.4848 | 0.8341 | (RMSprop + d) + (SGD + M + d) | 0.7868 | 0.7915 | 0.5462 | 0.8257 | (RMSprop + d) + RMSprop | 0.7120 | 0.8212 | 0.7487 | 0.8161 | (RMSprop + d) + (RMSprop + d) | 0.9602 | 0.7771 | 0.8846 | 0.7980 | (RMSprop + d) + Adam | 0.8002 | 0.7920 | 0.9164 | 0.8114 | (RMSprop + d) + (Adam + d) | 0.8254 | 0.8000 | 1.0931 | 0.8146 |
|
|
The bold values represent the best results.
|