Research Article

Differentially Private Attributed Network Releasing Based on Early Fusion

Algorithm 3

Differentially private attributed network publishing by late fusion (LN).
Input: node dataset V, attribute dataset , group number K, privacy parameter , , , maximum iterations .
Output: sanitized attribute network .
(1)Initialize the attribute network from V, and K.
(2)Initialize the parameters
(3)for t = 1,…,do
(4)E step: given , compute .
(5)M step: compute
(6)  .
(7)Compute and choose .
(8) Given , compute the number of vertices from , called .
(9) Compute .
(10)end for
(11)Compute , where denotes the number of the vertices which take the attribute value as .
(12)Compute attribute parameter , where denotes the sensitivity of u.
(13)Compute correlation parameter using and .
(14)Sample attribute with probability .
(15)Sample edge .