Research Article
Differentially Private Attributed Network Releasing Based on Early Fusion
Algorithm 3
Differentially private attributed network publishing by late fusion (LN).
| | Input: node dataset V, attribute dataset , group number K, privacy parameter , , , maximum iterations . | | | Output: sanitized attribute network . | | (1) | Initialize the attribute network from V, and K. | | (2) | Initialize the parameters | | (3) | for t = 1,…,do | | (4) | E step: given , compute . | | (5) | M step: compute | | (6) | . | | (7) | Compute and choose . | | (8) | Given , compute the number of vertices from , called . | | (9) | Compute . | | (10) | end for | | (11) | Compute , where denotes the number of the vertices which take the attribute value as . | | (12) | Compute attribute parameter , where denotes the sensitivity of u. | | (13) | Compute correlation parameter using and . | | (14) | Sample attribute with probability . | | (15) | Sample edge . |
|