Research Article

Local Gravitation Clustering-Based Semisupervised Online Sequential Extreme Learning Machine

Table 5

Classification accuracy of seven algorithms on and for real-world data sets.

ELMSTAR-SVMLap-SVMSS-ELMD-SOS-ELMLapTEMLGS-OSELM
DatasetAcc%Acc%Acc%Acc%Acc%Acc%Acc%
(c)(c, )(c, , k)(c, , k)(c)(c1, c2, k)(c, k)

Australian66.7869.7369.9670.8176.3475.4377.34
(10−2)(100, 0.7)(100, 10−2, 5)(102, 100, 10)(102)(102, 0.01, 10)(10−2, 10)
67.8270.5670.3870.8577.5677.4379.28
(10−2)(100, 0.7)(100, 10−2, 5)(102, 100, 10)(102)(102, 0.01, 10)(10−2, 10)
EEG-Eye73.3594.2373.4276.3093.2594.6297.65
(100)(102, 0.5)(102, 10−4, 15)(102, 100, 15)(102)(102, 0.01, 10)(102, 20)
75.4595.3674.3577.4292.1494.2597.58
(100)(102, 0.5)(102, 10−4, 15)(102, 100, 15)(102)(102, 0.01, 10)(102, 20)
Glass64.5268.2364.5266.3570.4672.1373.34
(10−2)(10−2, 0.7)(10−2, 102, 5)(10−2, 102, 5)(10−2)(10−2, 0.05, 15)(10−2, 10)
67.5271.6668.1466.6372.4572.3477.42
(10−2)(10−2, 0.7)(10−2, 102, 5)(10−2, 102, 5)(10−2)(102, 0.05, 15)(10−2, 10)
Heart66.3472.4572.5264.5275.1976.2678.39
(100)(102, 0.4)(102, 102, 5)(10−4, 102, 5)(10−4)(102, 0.1, 15)(100, 15)
67.1273.4375.7267.6475.2977.0977.65
(100)(102, 0.4)(102, 102, 5)(10−4, 102, 5)(10−4)(102, 0.1, 15)(100, 15)
MNIST81.5788.2388.5689.4591.1892.5792.32
(100)(102, 0.3)(102, 102, 5)(10−4, 10−2, 15)(10−4)(10−4, 0.05, 15)(102, 15)
83.0689.5689.8391.2691.6293.5292.35
(100)(102, 0.3)(102, 102, 5)(10−4, 10−2, 15)(10−4)(10−4, 0.05, 15)(102, 15)
Mushroom88.4590.3487.8490.3292.2489.1591.65
(100)(102, 0.5)(100, 102, 5)(10−2, 102, 10)(10−2)(10−2, 0.1, 15)(100, 5)
89.2192.6688.9390.4793.5489.2593.25
(100)(102, 0.5)(100, 102, 5)(10−2, 102, 10)(10−2)(10−2, 0.1, 15)(100, 5)
Ionosphere82.1786.2584.7284.1490.9490.9492.46
(10−2)(102, 0.7)(10−2, 102, 15)(10−2, 102, 10)(10−2)(10−2, 0.1, 15)(100, 15)
82.4386.3787.8284.4391.4691.4292.86
(10−2)(102, 0.7)(10−2, 102, 15)(10−2, 102, 10)(10−2)(10−2, 0.1, 15)(100, 15)
Pima62.5267.4465.4567.4468.1568.2469.23
(10−4)(10−4, 0.3)(10−4, 100, 10)(10−4, 100, 15)(10−4)(10−4, 0.1, 5)(10−4, 5)
63.6869.0565.8669.1768.5269.4571.80
(10−4)(10−4, 0.3)(10−4, 100, 10)(10−4, 100, 15)(10−4)(10−4, 0.1, 5)(10−4, 5)
Seeds58.4365.6160.4564.5668.6268.1667.52
(102)(102, 0.7)(102, 10−2, 10)(10−4, 100, 10)(10−4)(10−4, 0.01, 20)(102, 20)
58.4467.2662.1669.3069.1268.6271.35
(102)(102, 0.7)(102, 10−2, 10)(10−4, 100, 10)(10−4)(10−4, 0.01, 20)(102, 20)
Sonar73.4577.3267.2777.3480.2486.7285.68
(10−2)(10−2, 0.5)(10−4, 102, 5)(10−4, 10−2, 5)(10−2)(104, 0.05, 15)(104, 15)
73.5579.1769.1179.0082.1485.6887.19
(10−2)(10−2, 0.5)(10−4, 102, 5)(10−4, 10−2, 5)(10−2)(104, 0.05, 15)(104, 15)
USPS_2084.4496.5293.0495.2696.7298.1597.75
(10−2)(10−2, 0.6)(10−4, 102, 5)(10−2, 10−2, 5)(10−2)(10−2, 0.1, 5)(100, 5)
86.1492.3697.7695.5497.4298.2597.12
(10−2)(10−2, 0.6)(10−4, 102, 5)(10−2, 10−2, 5)(10−2)(10−2, 0.1, 5)(100, 5)
Wine48.3458.5251.3661.4158.6358.3262.52
(102)(102, 0.7)(102, 102, 15)(102, 10−2, 15)(10−2)(102, 0.01, 15)(102, 15)
58.4760.5862.4565.7861.6360.5364.27
(102)(102, 0.7)(102, 102, 15)(102, 10−2, 15)(10−2)(102, 0.01, 15)(102, 15)
Average70.8677.9173.2275.6580.2981.0482.15
72.7479.0476.1377.2981.3981.4283.63