Research Article
Local Gravitation Clustering-Based Semisupervised Online Sequential Extreme Learning Machine
Table 8
Training time of classifiers on the real-world data sets (in seconds).
| ā | STAR-SVM | Lap-SVM | SS-ELM | D-SOS-ELM | LapTEM | LGS-OSELM |
| Australian | 0.0314 | 0.0221 | 0.0244 | 0.0255 | 0.0290 | 0.0276 | EEG-Eye | 1.8615 | 1.4533 | 1.3532 | 1.5423 | 1.0732 | 1.0234 | Glass | 0.4512 | 0.3512 | 0.1526 | 0.1343 | 0.1512 | 0.1543 | Heart | 0.0252 | 0.0085 | 0.0052 | 0.0042 | 0.0084 | 0.0055 | MNIST | 0.2523 | 0.0835 | 0.0541 | 0.0543 | 0.0842 | 0.0643 | Mushroom | 2.3432 | 1.3141 | 2.8483 | 3.4253 | 0.9332 | 1.0023 | Ionosphere | 0.0556 | 0.0356 | 0.0042 | 0.0056 | 0.0053 | 0.0024 | Pima | 0.0242 | 0.0308 | 0.0201 | 0.0523 | 0.0471 | 0.0435 | Seeds | 0.092 | 0.0574 | 0.0742 | 0.0471 | 0.0407 | 0.0427 | Sonar | 0.1345 | 0.0945 | 0.0852 | 0.0595 | 0.0473 | 0.0425 | USPS_20 | 0.4152 | 0.1933 | 0.212 | 0.1923 | 0.2353 | 0.2391 | Wine | 0.3152 | 0.0933 | 0.1212 | 0.0923 | 0.2135 | 0.0912 |
|
|