Research Article
A Dynamic and Automated Access Control Management System for Social Networks
Algorithm 1
Interest-based clustering.
(1) | reviews = read (Profile-data) | (2) | input S [i]//Select Req. Columns | (3) | for i in range (0, len (S [i])): | (4) | revi = read S [i] from reviews | (5) | for j in range (0, len (revi)): | (6) | word.lower () | (7) | corpusi.append (word) | (8) | end for | (9) | ISF (corpusi)//Define function | (10) | di = dict ()//initialize dictionary | (11) | for word in corpusi | (12) | if word in di | (13) | di [word] = di [word] + 1 | (14) | else | (15) | di [word] = 1 | (16) | end if | (17) | end for | (18) | interesti = convert di to array | (19) | return interesti, corpusi | (20) | end function | (21) | CF (interesti, corpusi)//Define function | (22) | Ci = []//initialize cluster array | (23) | for line in corpusi: | (24) | for word in range (0, len (interesti)): | (25) | if line = = interesti [word] | (26) | Ci.append (word) | (27) | end if | (28) | end for | (29) | end for | (30) | R = reviews [‘Cluster’ i] = Ci | (31) | return R | (32) | end function | (33) | end for |
|