Research Article
A Shilling Group Detection Framework Based on Deep Learning Techniques
Table 3
Comparison of detection performance for seven methods
| ā | Netflix-1 | Netflix-2 | Amazon | Movielens 1M | Precision | Recall | F1-measure | Precision | Recall | F1-measure | Precision | Recall | F1-measure | Precision | Recall | F1-measure |
| CBS | 0.8973 | 0.8468 | 0.8713 | 0.6024 | 0.5718 | 0.5867 | 0.8793 | 0.8353 | 0.8567 | 0.8862 | 0.8396 | 0.8623 | DCEDM | 0.9838 | 0.5627 | 0.7159 | 0.7053 | 0.4599 | 0.5568 | 0.8637 | 0.7221 | 0.7866 | 0.9785 | 0.5869 | 0.7337 | TP-GBF | 0.9968 | 0.7926 | 0.8830 | 0.0124 | 0.0070 | 0.0089 | 0.9283 | 0.6467 | 0.7623 | 0.9856 | 0.8327 | 0.9027 | GD-BKM | 0.9044 | 0.9712 | 0.9366 | 0.7963 | 0.8052 | 0.8007 | 0.8234 | 0.6732 | 0.7408 | 0.2469 | 0.7683 | 0.3737 | CoDetector | 0.4328 | 0.3473 | 0.3854 | 0.4624 | 0.3094 | 0.3707 | 0.8056 | 0.8345 | 0.8198 | 0.1972 | 0.2043 | 0.2007 | SA-GraphSAGE | 0.9823 | 0.9446 | 0.9631 | 0.9023 | 0.8527 | 0.8768 | 0.8327 | 0.8652 | 0.8486 | 0.9756 | 0.9587 | 0.9671 | SA-GPSA | 0.9991 | 0.9992 | 0.9991 | 0.9861 | 0.9726 | 0.9793 | 0.9299 | 0.8907 | 0.9099 | 0.9983 | 0.9865 | 0.9924 |
|
|