Research Article
EFS-DNN: An Ensemble Feature Selection-Based Deep Learning Approach to Network Intrusion Detection System
Table 9
Five-class classification results in terms of TPR (%) and FPR (%) on KDD 99 dataset.
| Method | DoS | Probe | R2L | U2R | TPR | FPR | TPR | FPR | TPR | FPR | TPR | FPR |
| ID3 [27] | 99.90 | 0.03 | 99.70 | 0.55 | 93.50 | 0.98 | 49.10 | 0.15 | MARK-LEM [28] | 99.96 | 0.02 | 97.30 | 0.03 | 94.94 | 0.05 | 62.87 | 0.01 | HAST-IDS [29] | 99.10 | 0.02 | 83.35 | 0.01 | 74.19 | 0.02 | 64.25 | 0.02 | SwiftIDS [12] | 99.96 | 0.02 | 98.20 | 0.00 | 89.40 | 0.01 | 57.10 | 0.01 | EFS-DNN | 99.97 | 0.02 | 98.79 | 0.00 | 98.84 | 0.09 | 66.67 | 0.01 |
|
|