Research Article

A Network Data Reinforcement Method Based on the Multiclass Variational Autoencoder

Algorithm 1

Data Preprocessing.
def pre_processing (phase):
 if (phase = = ‘before MCVAE’):
  data = get_data() # get the dataset to be processed
  data = features_selected (data, features) # select features uses for training
  data = z_score (data) # scale data with z_score algorithm
 elif (phase = = ‘before Model Training’):
  data = label_encode (data) # map labels to 0 (benign) and 1 (nonbenign)
 else:
  print (‘error’) # if the function is used in other phases, an
  return 0 error will return
 return data # output the processed dataset