Research Article

Evolutionary Data Preprocessing to Alleviate Class Imbalance

Table 10

Experimental results of the training dataset preprocessed to the best tuple of SMOTE ratios, validation, and test dataset.

 D-S-1GR-R-2R-R-2GS-R-1G

ClassNormal0.9860.9850.9860.985
Exploits0.7180.3660.3640.41
Reconnaissance0.7040.6650.6580.658
DoS0.3210.0110.0090.705
Generic0.8970.9720.9720.972
Shellcode0.7420.3720.3850.416
Fuzzers0.8660.3570.3570.506
Worms0.5340.9310.9140.948
Backdoor0.3570.1080.0610.309
Analysis0.2060.9750.9790.204

ResultW. Avg.Recall0.9650.6930.9590.760
Precision0.9790.8580.9800.866
F-measure0.9710.7260.9660.785
1.2321.3501.3381.223
0.1960.6760.6620.508
0.2660.3780.3840.287
0.1960.4540.4630.304

Bold values mean the rare classes.