Research Article
Evolutionary Data Preprocessing to Alleviate Class Imbalance
Table 10
Experimental results of the training dataset preprocessed to the best tuple of SMOTE ratios, validation, and test dataset.
| ā | D-S-1G | R-R-2 | R-R-2G | S-R-1G |
| Class | Normal | 0.986 | 0.985 | 0.986 | 0.985 | Exploits | 0.718 | 0.366 | 0.364 | 0.41 | Reconnaissance | 0.704 | 0.665 | 0.658 | 0.658 | DoS | 0.321 | 0.011 | 0.009 | 0.705 | Generic | 0.897 | 0.972 | 0.972 | 0.972 | Shellcode | 0.742 | 0.372 | 0.385 | 0.416 | Fuzzers | 0.866 | 0.357 | 0.357 | 0.506 | Worms | 0.534 | 0.931 | 0.914 | 0.948 | Backdoor | 0.357 | 0.108 | 0.061 | 0.309 | Analysis | 0.206 | 0.975 | 0.979 | 0.204 |
| Result | W. Avg. | Recall | 0.965 | 0.693 | 0.959 | 0.760 | Precision | 0.979 | 0.858 | 0.980 | 0.866 | F-measure | 0.971 | 0.726 | 0.966 | 0.785 | | 1.232 | 1.350 | 1.338 | 1.223 | | 0.196 | 0.676 | 0.662 | 0.508 | | 0.266 | 0.378 | 0.384 | 0.287 | | 0.196 | 0.454 | 0.463 | 0.304 |
|
|
Bold values mean the rare classes.
|