Research Article
Evolutionary Data Preprocessing to Alleviate Class Imbalance
Table 9
Experimental results of the original training, validation, and test datasets for each classification algorithm.
| | Random subspace | Decision tree | SVM |
| Class | Normal | 0.985 | 0.986 | 0.986 | Exploits | 0.884 | 0.810 | 0.909 | Reconnaissance | 0.693 | 0.691 | 0.647 | DoS | 0.283 | 0.402 | 0.000 | Generic | 0.003 | 0.981 | 0.972 | Shellcode | 0.853 | 0.756 | 0.681 | Fuzzers | 0.893 | 0.893 | 0.708 | Worms | 0.000 | 0.052 | 0.000 | Backdoor | 0.006 | 0.031 | 0.000 | Analysis | 0.103 | 0.030 | 0.027 |
| Result | W. Avg. | Recall | 0.891 | 0.974 | 0.971 | Precision | — | 0.981 | — | F-measure | — | 0.976 | — | | 1.112 | 1.324 | 1.190 | | 0.119 | 0.132 | 0.090 | | 0.426 | 0.399 | 0.434 | | 0.290 | 0.297 | 0.287 |
|
|