Research Article

A Power Transformer Fault Prediction Method through Temporal Convolutional Network on Dissolved Gas Chromatography Data

Table 6

Gas regression results of transformer no. 1.

GasMetricsMSTCNTCNLSTMGRU

C2H2RMSE0.00510.00260.00650.0042
MAE0.00430.00200.00550.0036
MAPE14.07%5.80%17.96%11.66%
0.70910.92540.52180.7975
C2H4RMSE0.00560.00580.00890.0065
MAE0.00450.00450.00710.0052
MAPE1.32%1.31%2.05%1.51%
0.85030.83930.61610.7967
C2H6RMSE0.04940.05670.07680.0721
MAE0.04500.04910.06460.0630
MAPE1.24%1.33%1.76%1.73%
0.94190.92370.85990.8764
CH4RMSE0.01380.02000.02840.0350
MAE0.01160.01550.02300.0314
MAPE0.41%0.54%0.81%1.10%
0.92940.85160.70190.5483
CORMSE12.292512.343113.906116.6197
MAE8.883710.151011.910113.2390
MAPE2.03%2.26%2.65%2.87%
0.80950.80790.75620.6518
CO2RMSE44.871850.187347.734853.6491
MAE31.998340.401840.197741.3562
MAPE2.56%3.11%3.07%3.25%
0.88560.85690.87050.8364
H2RMSE0.00830.01080.05350.0468
MAE0.00620.00950.05240.0458
MAPE0.13%0.20%1.12%0.98%
0.88100.7981āˆ’3.9776āˆ’2.8074