Research Article
A Power Transformer Fault Prediction Method through Temporal Convolutional Network on Dissolved Gas Chromatography Data
Table 6
Gas regression results of transformer no. 1.
| Gas | Metrics | MSTCN | TCN | LSTM | GRU |
| C2H2 | RMSE | 0.0051 | 0.0026 | 0.0065 | 0.0042 | MAE | 0.0043 | 0.0020 | 0.0055 | 0.0036 | MAPE | 14.07% | 5.80% | 17.96% | 11.66% | | 0.7091 | 0.9254 | 0.5218 | 0.7975 | C2H4 | RMSE | 0.0056 | 0.0058 | 0.0089 | 0.0065 | MAE | 0.0045 | 0.0045 | 0.0071 | 0.0052 | MAPE | 1.32% | 1.31% | 2.05% | 1.51% | | 0.8503 | 0.8393 | 0.6161 | 0.7967 | C2H6 | RMSE | 0.0494 | 0.0567 | 0.0768 | 0.0721 | MAE | 0.0450 | 0.0491 | 0.0646 | 0.0630 | MAPE | 1.24% | 1.33% | 1.76% | 1.73% | | 0.9419 | 0.9237 | 0.8599 | 0.8764 | CH4 | RMSE | 0.0138 | 0.0200 | 0.0284 | 0.0350 | MAE | 0.0116 | 0.0155 | 0.0230 | 0.0314 | MAPE | 0.41% | 0.54% | 0.81% | 1.10% | | 0.9294 | 0.8516 | 0.7019 | 0.5483 | CO | RMSE | 12.2925 | 12.3431 | 13.9061 | 16.6197 | MAE | 8.8837 | 10.1510 | 11.9101 | 13.2390 | MAPE | 2.03% | 2.26% | 2.65% | 2.87% | | 0.8095 | 0.8079 | 0.7562 | 0.6518 | CO2 | RMSE | 44.8718 | 50.1873 | 47.7348 | 53.6491 | MAE | 31.9983 | 40.4018 | 40.1977 | 41.3562 | MAPE | 2.56% | 3.11% | 3.07% | 3.25% | | 0.8856 | 0.8569 | 0.8705 | 0.8364 | H2 | RMSE | 0.0083 | 0.0108 | 0.0535 | 0.0468 | MAE | 0.0062 | 0.0095 | 0.0524 | 0.0458 | MAPE | 0.13% | 0.20% | 1.12% | 0.98% | | 0.8810 | 0.7981 | ā3.9776 | ā2.8074 |
|
|