Research Article

From Spatial to Spectral Domain, a New Perspective for Detecting Adversarial Examples

Table 4

Comparison of AUC (%) under various evaluation setups. Our method HLFD takes the last two layers of representation and the mid-high and high-frequency regions as input. The norm of perturbation of MNIST is 2.8, the norm of T-ImageNet is 22, and the other three datasets are all  = 5.5.

DatasetDetectorDetection of six attack methods
FGSMBIMPGDJSMACWDF

MNISTKD + PU90.492.588.985.389.883.1
LID92.887.985.289.585.390.4
M-D97.699.198.592.788.684.3
HLFD (ours)99.898.599.189.495.492.8

SVHNKD + PU85.480.585.475.676.586.3
LID95.875.686.485.284.788.9
M-D99.496.394.387.682.592.5
HLFD (ours)99.599.497.495.693.489.5

CIFAR-10KD + PU83.495.294.582.465.472.5
LID94.293.593.885.480.584.3
M-D97.598.198.690.783.287.5
HLFD (ours)99.598.698.894.595.692.6

CIFAR-100KD + PU92.389.590.184.565.468.4
LID98.595.496.782.670.575.6
M-D99.297.196.489.378.982.9
HLFD (ours)99.799.497.596.486.485.3

T-ImageNetKD + PU85.490.588.273.662.569.8
LID86.288.489.377.265.664.2
M-D92.587.785.472.275.479.5
HLFD (ours)94.391.586.488.680.478.3