Research Article

Password Guessing Based on GAN with Gumbel-Softmax

Algorithm 1

G-Pass with gradient penalty.
(i)Input: The gradient penalty coefficient , the maximum of training iterations , the number of discriminator iterations per generator iteration , the batch size , the learning rate , Adam hyperparameters and , initial discriminator parameters , initial generator parameters , the highest temperature
(1)for to do
 / training discriminator /
(2)for to do
(3)for to do
(4)   Sample real data , , random number
     , is the temperature of current iteration;
(5)   ;
(6)   ;
(7)   ;
(8)  end
(9)  ;
(10) end
/training generator /
(11)Sample a batch of input of generator ;
(12)
/ update the temperature /
(13)
(14)end