Research Article
A DDoS-Attack Detection Method Oriented to the Blockchain Network Layer
Table 1
Parameters selected for the CMCNN model.
| Parameter | Description | Value |
| M | Batch training size | 50 | K | Dimension of input traffic features | 163 | Channel | Number of model channels | 2 | ρ′ m | Average activation degree of the SSAE layer | 0.52 | λ | L2 weight regularisation loss | 0.49 | β | Coefficient of sparse control weight | 0.89 | α | Momentum parameter | 0.97 | ξ | Learning rate adjustment parameter | 50 | ε | Threshold of changes in model accuracy rate | 0.05 | μ | Leakage parameter of Leaky ReLU | 0.1 | ηmin | Min value of the learning rate | 0.5 | ηmax | Max value of the learning rate | 0.99 | Niter | Total number of model iterations | 1200 |
|
|