Research Article

LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection

Algorithm 1

Proposed framework of LogCAD.
 Input: Detected log set X, Training log set T, Training normal log set T1, Training abnormal log set T2, Significance level
 Output: Prediction set
1Γε⟵∅
2BaseClassifier ⟵ {LR, SVM, DT, NB}
3for all i BaseClassifier do
4  Train ensemble classifier with training log data T
5  Normal scores set SN ⟵Ensemble classifier’ non-conformity measure(T1)
6  Abnormal score set SA ⟵ Ensemble classifier’ non-conformity measure(T2)
7  for all log entry xX do
8   pN(x)⟵normal p value calculated in SN
9   pA(x)⟵abnormal p value calculated in SA
10   if pN(x) ≥ pA(x) then
11    Cred(x) ⟵ pN(x)
12    Conf(x) ⟵1 – pA(x)
13    if Conf(x) ≥ then
14     result(x) ⟵(NORMAL, Conf(x))//detection results are pairs of (class label, confidence)
15    else
16    result(x) ⟵(ABNORMAL, Conf(x))
17  else
18   Cred(x) ⟵ pA(x)
19   Conf(x) ⟵1 – pN(x)
20   if Conf(x) ≥ then
21    result(x) ⟵(ABNORMAL, Conf(x))
22   else
23    result(x) ⟵(NORMAL, Conf(x))
24   Γε⟵Γε∪{result(x)}
25   end
26end