Research Article
LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection
Table 4
Experimental results on HDFS unstable log sequences.
| Injection rate (%) | Classifier | Accuracy | Precision | Recall | F1 | MCC |
| 5 | LR | 0.999 | 0.94 | 0.997 | 0.967 | 0.967 | SVM | 0.996 | 0.849 | 0.994 | 0.916 | 0.917 | NB | 0.996 | 0.849 | 0.998 | 0.918 | 0.919 | LogRobust | 0.996 | 0.990 | 0.930 | 0.960 | 0.965 | CP | 0.998 | 0.946 | 1 | 0.972 | 0.972 | LogCAD | 1 | 0.992 | 1 | 0.996 | 0.996 |
| 10 | LR | 0.998 | 0.94 | 0.984 | 0.961 | 0.961 | SVM | 0.996 | 0.848 | 0.989 | 0.913 | 0.914 | NB | 0.996 | 0.849 | 0.993 | 0.915 | 0.916 | LogRobust | 0.997 | 0.940 | 0.990 | 0.961 | 0.964 | CP | 0.998 | 0.946 | 1 | 0.972 | 0.972 | LogCAD | 0.999 | 0.996 | 0.992 | 0.994 | 0.994 |
| 15 | LR | 0.998 | 0.94 | 0.984 | 0.961 | 0.961 | SVM | 0.996 | 0.848 | 0.989 | 0.913 | 0.914 | NB | 0.996 | 0.849 | 0.999 | 0.996 | 0.992 | LogRobust | 0.998 | 0.980 | 0.910 | 0.940 | 0.960 | CP | 0.998 | 0.945 | 0.992 | 0.968 | 0.968 | LogCAD | 1 | 0.992 | 0.992 | 0.992 | 0.992 |
| 20 | LR | 0.998 | 0.939 | 0.983 | 0.960 | 0.960 | SVM | 0.993 | 0.846 | 0.987 | 0.911 | 0.909 | NB | 0.995 | 0.854 | 0.979 | 0.912 | 0.910 | LogRobust | 0.998 | 0.920 | 0.970 | 0.950 | 0.960 | CP | 0.998 | 0.946 | 0.996 | 0.97 | 0.97 | LogCAD | 0.999 | 0.975 | 0.996 | 0.985 | 0.985 |
|
|