Research Article
LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection
Table 5
Experimental results on BGL_100K unstable log sequences.
| Injection rate (%) | Classifier | Accuracy | Precision | Recall | F1 | MCC |
| 5 | LR | 0.463 | 1 | 0.12 | 0.214 | 0.25 | SVM | 0.667 | 0.833 | 0.156 | 0.263 | 0.32 | NB | 0.756 | 0.857 | 0.72 | 0.783 | 0.622 | LogRobust | 0.488 | 0.833 | 0.2 | 0.323 | 0.328 | CP | 0.756 | 0.857 | 0.72 | 0.783 | 0.622 | LogCAD | 0.854 | 0.806 | 1 | 0.893 | 0.71 |
| 10 | LR | 0.631 | 0.571 | 0.125 | 0.205 | 0.296 | SVM | 0.667 | 0.833 | 0.156 | 0.263 | 0.32 | NB | 0.655 | 0.714 | 0.156 | 0.758 | 0.677 | LogRobust | 0.488 | 0.833 | 0.2 | 0.323 | 0.328 | CP | 0.683 | 0.8 | 0.64 | 0.711 | 0.556 | LogCAD | 0.854 | 0.806 | 1 | 0.893 | 0.71 |
| 15 | LR | 0.631 | 0.571 | 0.125 | 0.205 | 0.296 | SVM | 0.667 | 0.833 | 0.156 | 0.263 | 0.32 | NB | 0.655 | 0.714 | 0.156 | 0.758 | 0.677 | LogRobust | 0.463 | 1 | 0.12 | 0.214 | 0.225 | CP | 0.756 | 0.857 | 0.72 | 0.783 | 0.622 | LogCAD | 0.829 | 0.909 | 0.8 | 0.851 | 0.709 |
| 20 | LR | 0.631 | 0.571 | 0.125 | 0.205 | 0.296 | SVM | 0.655 | 0.714 | 0.156 | 0.256 | 0.321 | NB | 0.69 | 0.568 | 0.781 | 0.658 | 0.56 | LogRobust | 0.414 | 1 | 0.04 | 0.077 | 0.126 | CP | 0.683 | 0.75 | 0.72 | 0.735 | 0.55 | LogCAD | 0.756 | 0.8 | 0.8 | 0.8 | 0.613 |
|
|