Research Article

LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection

Table 5

Experimental results on BGL_100K unstable log sequences.

Injection rate (%)ClassifierAccuracyPrecisionRecallF1MCC

5LR0.46310.120.2140.25
SVM0.6670.8330.1560.2630.32
NB0.7560.8570.720.7830.622
LogRobust0.4880.8330.20.3230.328
CP0.7560.8570.720.7830.622
LogCAD0.8540.80610.8930.71

10LR0.6310.5710.1250.2050.296
SVM0.6670.8330.1560.2630.32
NB0.6550.7140.1560.7580.677
LogRobust0.4880.8330.20.3230.328
CP0.6830.80.640.7110.556
LogCAD0.8540.80610.8930.71

15LR0.6310.5710.1250.2050.296
SVM0.6670.8330.1560.2630.32
NB0.6550.7140.1560.7580.677
LogRobust0.46310.120.2140.225
CP0.7560.8570.720.7830.622
LogCAD0.8290.9090.80.8510.709

20LR0.6310.5710.1250.2050.296
SVM0.6550.7140.1560.2560.321
NB0.690.5680.7810.6580.56
LogRobust0.41410.040.0770.126
CP0.6830.750.720.7350.55
LogCAD0.7560.80.80.80.613