Research Article
LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection
Table 7
Effectiveness of multiple models on BGL_100K log data set.
| Injection rate (%) | Classifier | Accuracy | Precision | Recall | F1 | MCC |
| 5 | CP-AB-LR | 0.78 | 0.864 | 0.76 | 0.809 | 0.648 | CP-AB-SVM | 0.805 | 0.87 | 0.8 | 0.833 | 0.676 | CP-AB-NB | 0.756 | 0.857 | 0.72 | 0.783 | 0.622 | LogCAD | 0.854 | 0.806 | 1 | 0.893 | 0.71 |
| 10 | CP-AB-LR | 0.756 | 0.888 | 0.8 | 0.8 | 0.613 | CP-AB-SVM | 0.683 | 0.75 | 0.72 | 0.735 | 0.55 | CP-AB-NB | 0.78 | 0.786 | 0.88 | 0.83 | 0.624 | LogCAD | 0.854 | 0.806 | 1 | 0.893 | 0.71 |
| 15 | CP-AB-LR | 0.732 | 0.85 | 0.68 | 0.756 | 0.598 | CP-AB-SVM | 0.829 | 0.909 | 0.8 | 0.851 | 0.709 | CP-AB-NB | 0.756 | 0.857 | 0.72 | 0.783 | 0.622 | LogCAD | 0.829 | 0.909 | 0.8 | 0.851 | 0.709 |
| 20 | CP-AB-LR | 0.732 | 0.792 | 0.76 | 0.776 | 0.592 | CP-AB-SVM | 0.756 | 0.8 | 0.8 | 0.8 | 0.613 | CP-AB-NB | 0.683 | 0.75 | 0.72 | 0.735 | 0.55 | LogCAD | 0.756 | 0.8 | 0.8 | 0.8 | 0.613 |
|
|