Research Article
Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification
Table 2
The proposed DE-MSVM method performance on axial slice images.
| ADNI dataset (axial slice) | Feature selection | Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | FOR (%) | FDR (%) | MCC (%) |
| Without feature selection | Autoencoder | 83.4 | 84.69 | 84.53 | 80.51 | 85.54 | 70.36 | AdaBoost | 82.71 | 84.99 | 86.32 | 75.97 | 92.76 | 80.52 | MSVM (linear) | 86.25 | 88.26 | 72.51 | 78.45 | 86.69 | 74.28 | MSVM | 87.7 | 89.51 | 87.36 | 88.93 | 89.28 | 87.17 |
| Bat feature selection algorithm | Autoencoder | 85.35 | 85.35 | 84.56 | 80.37 | 86.41 | 72.06 | AdaBoost | 83.15 | 81.3 | 82.82 | 76.04 | 83.43 | 80.94 | MSVM (linear) | 84.31 | 83.07 | 72.11 | 79.42 | 82.86 | 74.63 | MSVM | 89.72 | 90.98 | 89.8 | 90.28 | 89.9 | 91.63 | Grey wolf algorithm | Autoencoder | 88.53 | 87.44 | 88.09 | 82.23 | 88.86 | 74.46 | AdaBoost | 86.33 | 87.54 | 88.66 | 78.58 | 86.85 | 81.37 | MSVM (linear) | 85.98 | 85.33 | 75.05 | 82.26 | 89.76 | 75.99 | MSVM | 90 | 91.85 | 90.32 | 91.13 | 90.59 | 91.21 |
| Whale optimization algorithm | Autoencoder | 87.89 | 89.75 | 87.43 | 84.23 | 90.34 | 76.3 | AdaBoost | 87.48 | 86.8 | 87.47 | 81.82 | 91.98 | 86.78 | MSVM (linear) | 89.55 | 93.26 | 75.23 | 82.25 | 89.17 | 80.58 | MSVM | 95.23 | 92.76 | 94.26 | 95.48 | 94.6 | 93.02 |
| Multiobjective differential evolutionary algorithm | Autoencoder | 90.98 | 85 | 89.86 | 89.43 | 90.01 | 85.61 | AdaBoost | 96.67 | 95.96 | 95.07 | 92.82 | 94.09 | 91.87 | MSVM (linear) | 97.33 | 96.92 | 97.41 | 97.65 | 96.76 | 92.35 | MSVM | 98.13 | 98.96 | 98.2 | 98.36 | 97.03 | 96.06 |
|
|