Research Article

Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification

Table 2

The proposed DE-MSVM method performance on axial slice images.

ADNI dataset (axial slice)
Feature selectionClassifierAccuracy (%)Sensitivity (%)Specificity (%)FOR (%)FDR (%)MCC (%)

Without feature selectionAutoencoder83.484.6984.5380.5185.5470.36
AdaBoost82.7184.9986.3275.9792.7680.52
MSVM (linear)86.2588.2672.5178.4586.6974.28
MSVM87.789.5187.3688.9389.2887.17

Bat feature selection algorithmAutoencoder85.3585.3584.5680.3786.4172.06
AdaBoost83.1581.382.8276.0483.4380.94
MSVM (linear)84.3183.0772.1179.4282.8674.63
MSVM89.7290.9889.890.2889.991.63
Grey wolf algorithmAutoencoder88.5387.4488.0982.2388.8674.46
AdaBoost86.3387.5488.6678.5886.8581.37
MSVM (linear)85.9885.3375.0582.2689.7675.99
MSVM9091.8590.3291.1390.5991.21

Whale optimization algorithmAutoencoder87.8989.7587.4384.2390.3476.3
AdaBoost87.4886.887.4781.8291.9886.78
MSVM (linear)89.5593.2675.2382.2589.1780.58
MSVM95.2392.7694.2695.4894.693.02

Multiobjective differential evolutionary algorithmAutoencoder90.988589.8689.4390.0185.61
AdaBoost96.6795.9695.0792.8294.0991.87
MSVM (linear)97.3396.9297.4197.6596.7692.35
MSVM98.1398.9698.298.3697.0396.06