Research Article
Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification
Table 3
The proposed DE-MSVM method performance analysis on the sagittal slice.
| ADNI dataset (sagittal slice) | Feature selection | Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | FOR (%) | FDR (%) | MCC (%) |
| Without feature selection | Autoencoder | 82.7 | 84.65 | 82.31 | 79.87 | 86.05 | 79.32 | AdaBoost | 82.6 | 84.96 | 85.8 | 75.33 | 92.19 | 79.55 | MSVM (linear) | 85.47 | 87.38 | 83.9 | 80.89 | 85.23 | 79.74 | MSVM | 85.73 | 91.34 | 89.91 | 83.14 | 86.05 | 84.04 |
| Bat feature selection algorithm | Autoencoder | 84.16 | 88.94 | 71.49 | 79.4 | 86.03 | 74.09 | AdaBoost | 83.82 | 84.45 | 86.43 | 75.15 | 83.19 | 80.36 | MSVM (linear) | 85.57 | 85.14 | 83.94 | 80.17 | 85.58 | 81.44 | MSVM | 87.31 | 89.19 | 90.93 | 89.29 | 89.45 | 87.87 |
| Grey wolf algorithm | Autoencoder | 85.03 | 90.57 | 84.6 | 81.44 | 88.9 | 85.6 | AdaBoost | 85.41 | 87.03 | 88.23 | 78.21 | 93.24 | 80.8 | MSVM (linear) | 88.52 | 86.72 | 87.36 | 81.86 | 88.74 | 74.46 | MSVM | 88.09 | 91.6 | 89.8 | 90.74 | 90.27 | 89.84 |
| Whale optimization algorithm | Autoencoder | 87.24 | 89.71 | 82.98 | 83.99 | 84.02 | 75.5 | AdaBoost | 87.26 | 86.19 | 82.84 | 84.38 | 86.87 | 86.58 | MSVM (linear) | 89.1 | 90.2 | 84.39 | 86.46 | 88.49 | 80.54 | MSVM | 95.18 | 94.21 | 93.27 | 96.76 | 89.72 | 92.19 |
| Multiobjective differential evolutionary algorithm | Autoencoder | 97.89 | 96.78 | 96.86 | 97.45 | 97.05 | 72.33 | AdaBoost | 95.08 | 95.03 | 94.6 | 94.4 | 94.53 | 91.42 | MSVM (linear) | 90.76 | 89.07 | 90.12 | 90.26 | 89.2 | 85.04 | MSVM | 98.65 | 98.32 | 97.81 | 98.69 | 98.78 | 96.06 |
|
|