Research Article

Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification

Table 3

The proposed DE-MSVM method performance analysis on the sagittal slice.

ADNI dataset (sagittal slice)
Feature selectionClassifierAccuracy (%)Sensitivity (%)Specificity (%)FOR (%)FDR (%)MCC (%)

Without feature selectionAutoencoder82.784.6582.3179.8786.0579.32
AdaBoost82.684.9685.875.3392.1979.55
MSVM (linear)85.4787.3883.980.8985.2379.74
MSVM85.7391.3489.9183.1486.0584.04

Bat feature selection algorithmAutoencoder84.1688.9471.4979.486.0374.09
AdaBoost83.8284.4586.4375.1583.1980.36
MSVM (linear)85.5785.1483.9480.1785.5881.44
MSVM87.3189.1990.9389.2989.4587.87

Grey wolf algorithmAutoencoder85.0390.5784.681.4488.985.6
AdaBoost85.4187.0388.2378.2193.2480.8
MSVM (linear)88.5286.7287.3681.8688.7474.46
MSVM88.0991.689.890.7490.2789.84

Whale optimization algorithmAutoencoder87.2489.7182.9883.9984.0275.5
AdaBoost87.2686.1982.8484.3886.8786.58
MSVM (linear)89.190.284.3986.4688.4980.54
MSVM95.1894.2193.2796.7689.7292.19

Multiobjective differential evolutionary algorithmAutoencoder97.8996.7896.8697.4597.0572.33
AdaBoost95.0895.0394.694.494.5391.42
MSVM (linear)90.7689.0790.1290.2689.285.04
MSVM98.6598.3297.8198.6998.7896.06