Research Article
Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification
Table 4
The proposed DE-MSVM method on the coronal slice.
| ADNI dataset (coronal slice) | Feature selection | Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | FOR (%) | FDR (%) | MCC (%) |
| Without feature selection | Autoencoder | 77.49 | 84.79 | 83.09 | 75.6 | 84.42 | 77.97 | AdaBoost | 75.11 | 82.58 | 82.41 | 73.18 | 84.7 | 73.39 | MSVM (linear) | 79.72 | 81.07 | 65.98 | 73.24 | 82.65 | 76.07 | MSVM | 85.31 | 89.77 | 85.3 | 86.31 | 86.2 | 79.87 |
| Bat feature selection algorithm | Autoencoder | 80.07 | 78.99 | 77.06 | 78.33 | 83.82 | 78.33 | AdaBoost | 77.03 | 83.98 | 84.8 | 70.14 | 81.35 | 78.52 | MSVM (linear) | 79.75 | 83.5 | 79.96 | 76.71 | 77.44 | 70.39 | MSVM | 84.1 | 84.39 | 85.07 | 84.8 | 83.87 | 80.03 |
| Grey wolf algorithm | Autoencoder | 83.29 | 82.43 | 81.25 | 84.96 | 84.9 | 79.41 | AdaBoost | 86.77 | 87.32 | 87.51 | 80.45 | 86.66 | 87.35 | MSVM (linear) | 87.09 | 86.66 | 93.23 | 86.98 | 89.35 | 84.05 | MSVM | 95.07 | 98.28 | 90.39 | 92.28 | 96.08 | 89.33 |
| Whale optimization algorithm | Autoencoder | 85.41 | 87.85 | 84.14 | 82.68 | 83.5 | 80.41 | AdaBoost | 90.31 | 88.03 | 87.76 | 89.06 | 89.82 | 89.25 | MSVM (linear) | 89.62 | 87.99 | 86.46 | 86.59 | 89.01 | 88.1 | MSVM | 96.21 | 96.68 | 95.28 | 94.71 | 94.26 | 95.34 |
| Multiobjective differential evolutionary algorithm | Autoencoder | 91.03 | 90.8 | 91.34 | 90.87 | 90.21 | 76.59 | AdaBoost | 95.9 | 94.08 | 94.9 | 95.49 | 95.64 | 81.26 | MSVM (linear) | 97.53 | 96.06 | 97.65 | 97.34 | 96.79 | 92.7 | MSVM | 98.12 | 97.78 | 98.7 | 98.06 | 97.89 | 95.81 |
|
|