Research Article

Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification

Table 4

The proposed DE-MSVM method on the coronal slice.

ADNI dataset (coronal slice)
Feature selectionClassifierAccuracy (%)Sensitivity (%)Specificity (%)FOR (%)FDR (%)MCC (%)

Without feature selectionAutoencoder77.4984.7983.0975.684.4277.97
AdaBoost75.1182.5882.4173.1884.773.39
MSVM (linear)79.7281.0765.9873.2482.6576.07
MSVM85.3189.7785.386.3186.279.87

Bat feature selection algorithmAutoencoder80.0778.9977.0678.3383.8278.33
AdaBoost77.0383.9884.870.1481.3578.52
MSVM (linear)79.7583.579.9676.7177.4470.39
MSVM84.184.3985.0784.883.8780.03

Grey wolf algorithmAutoencoder83.2982.4381.2584.9684.979.41
AdaBoost86.7787.3287.5180.4586.6687.35
MSVM (linear)87.0986.6693.2386.9889.3584.05
MSVM95.0798.2890.3992.2896.0889.33

Whale optimization algorithmAutoencoder85.4187.8584.1482.6883.580.41
AdaBoost90.3188.0387.7689.0689.8289.25
MSVM (linear)89.6287.9986.4686.5989.0188.1
MSVM96.2196.6895.2894.7194.2695.34

Multiobjective differential evolutionary algorithmAutoencoder91.0390.891.3490.8790.2176.59
AdaBoost95.994.0894.995.4995.6481.26
MSVM (linear)97.5396.0697.6597.3496.7992.7
MSVM98.1297.7898.798.0697.8995.81