Research Article
ASLNet: An Encoder-Decoder Architecture for Audio Splicing Detection and Localization
Table 4
The detection results of the Jadhav et al. [
11] and the ASLNet with MFCC feature and
ā=ā0.5 under the cross-database testing scenario.
| Methods | Train dataset | Test dataset | | | |
| Jadhav et al. [11] | ENSet2s | CNSet2s | 0.8002 | 0.8512 | 0.8468 | CNSet2s | ENSet2s | 0.8295 | 0.8395 | 0.8320 | ENSet3s | CNSet3s | 0.8965 | 0.8620 | 0.8754 | CNSet3s | ENSet3s | 0.8495 | 0.8929 | 0.8826 |
| ASLNet | ENSet2s | CNSet2s | 0.9072 | 0.9600 | 0.9420 | CNSet2s | ENSet2s | 0.8990 | 0.8540 | 0.8718 | ENSet3s | CNSet3s | 0.9347 | 0.9944 | 0.9740 | CNSet3s | ENSet3s | 0.9474 | 0.9229 | 0.9271 |
|
|