Research Article

Multi-DS Strategy for Source Camera Identification in Few-Shot Sample Data Sets

Table 7

Average confusion matrix obtained by SVM classification over 20 iterations (%) (Dresden database).

C1C2F1K1N1N2N3O1P1P2R1SL1SN1SD1SD2SD3

C197.50.70.20.20.10.30.10.30.10.5
C22.290.90.10.10.70.60.83.60.30.50.2
F10.186.30.10.40.30.11.81.58.20.50.50.1
K10.394.60.73.60.70.1
N10.72.30.792.21.30.80.20.41.4
N20.50.71.10.791.93.30.10.30.40.70.3
N30.50.82.995.00.11.00.20.10.3
O12.20.30.20.10.50.593.50.10.30.12.10.1
P10.10.90.10.10.12.00.193.70.20.12.20.20.10.1
P20.41.30.91.42.12.60.887.21.91.20.10.1
R10.13.70.10.52.20.10.11.090.40.41.4
SL11.02.10.10.91.30.20.30.80.40.592.00.4
SN10.91.40.80.10.60.10.10.74.32.40.787.40.5
SD10.10.10.30.10.90.20.30.40.266.53.727.2
SD20.20.70.10.40.22.093.92.5
SD30.10.10.70.10.150.21.347.4

The bold values (diagonal values) indicate that the prediction labels of the model are equal to the real labels, that is, the accuracy of the correctly classified results.