Research Article
Delta-DAGMM: A Free Rider Attack Detection Model in Horizontal Federated Learning
| Input: n // number of training rounds, m // number of participants, // local updated model parameter | | Output: atkList // list of Free-rider attack detection results | (1) | Initialize the global model and the list of attack detection results atkList | (2) | for t = 1 to n do // t denotes the current training round | (3) | Parameter server sends the global model to all participants | (4) | // Get the energies of samples calculated by Delta-DAGMM | (5) | for i = 1 to m do | (6) | // Gets the participant local update model increment | (7) | | (8) | // Process the model increment | (9) | | (10) | // Input the processed model increment as a sample | (11) | | (12) | end for | (13) | // Free-rider attack detection | (14) | | (15) | for i = 1 to m do | (16) | // Set threshold | (17) | if then | (18) | | (19) | end for | (20) | // Update the global model | (21) | | (22) | end for | (23) | return atkList | (24) | end for |
|