Research Article
TADW: Traceable and Anti-detection Dynamic Watermarking of Deep Neural Networks
Table 3
Testing accuracy on clean models and watermarked models.
| Model | SST-2 | AG-News | TextCNN (%) | TextRNN (%) | BERT (%) | TextCNN (%) | TextRNN (%) | BERT (%) |
| Clean | 89.07 | 88.19 | 91.49 | 93.88 | 93.30 | 94.25 | SN-10-1 | 88.58 | 87.75 | 91.05 | 93.66 | 93.87 | 93.87 | SN-10-2 | 88.58 | 87.75 | 91.10 | 93.55 | 92.99 | 93.87 | SN-10-3 | 88.91 | 87.75 | 91.05 | 93.43 | 92.97 | 93.79 | SN-10-4 | 88.58 | 87.70 | 91.05 | 93.39 | 92.80 | 94.01 | SN-10-5 | 88.63 | 87.70 | 91.27 | 93.63 | 92.84 | 93.78 | SN-10-6 | 88.85 | 87.70 | 91.05 | 93.45 | 92.83 | 93.84 | SN-10-7 | 88.58 | 88.25 | 91.21 | 93.39 | 92.86 | 94.11 | SN-10-8 | 88.58 | 87.70 | 91.65 | 93.38 | 92.84 | 94.01 | SN-10-9 | 88.58 | 87.70 | 91.32 | 93.39 | 92.80 | 94.17 | SN-10-10 | 88.63 | 87.81 | 91.27 | 93.47 | 92.87 | 93.92 |
|
|