Research Article
TADW: Traceable and Anti-detection Dynamic Watermarking of Deep Neural Networks
Table 6
Testing accuracy on clean models and watermarked models under different
.
| Model | SST-2 | AG-News | TextCNN (%) | TextRNN (%) | BERT (%) | TextCNN (%) | TextRNN (%) | BERT (%) |
| Clean | 89.07 | 88.19 | 91.49 | 93.88 | 93.30 | 94.25 | SN-15-1 | 88.58 | 88.19 | 91.16 | 93.42 | 92.82 | 93.89 | SN-15-2 | 88.69 | 87.86 | 91.10 | 93.45 | 92.86 | 93.93 | SN-15-7 | 88.63 | 87.70 | 90.99 | 93.59 | 93.04 | 93.99 | SN-15-10 | 88.58 | 88.03 | 90.99 | 93.45 | 92.91 | 94.05 | SN-20-1 | 88.58 | 87.75 | 91.05 | 93.57 | 92.87 | 93.87 | SN-20-2 | 88.63 | 87.70 | 91.38 | 93.39 | 92.84 | 93.97 | SN-20-10 | 88.69 | 88.08 | 90.99 | 93.46 | 92.80 | 94.14 | SN-20-20 | 88.80 | 87.70 | 91.32 | 93.49 | 92.80 | 93.87 |
|
|