Research Article
Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning
Table 10
Classification performance of the sampled dataset with the SMOTE algorithm.
| | Precision | Recall | F1 score | FNR | FPR |
| SMOTE layer1 | Benign | 0.9999 | 0.9977 | 0.9988 | 0.0001 | 0.0023 | Other | 0.9977 | 0.9999 | 0.9988 | 0.0023 | 0.0001 |
| Accuracy | | | | | 0.9988 | Macro avg | 0.9988 | 0.9988 | 0.9988 | 0.0012 | 0.0012 | Weighted avg | 0.9988 | 0.9988 | 0.9988 | 0.0012 | 0.0012 |
| SMOTE layer2 | Benign | 0.9999 | 0.9977 | 0.9988 | 0.0001 | 0.0023 | DoS hulk | 0.9819 | 1.0000 | 0.9909 | 0.0181 | 0.0000 | DDoS | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | PortScan | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | DoS goldeneye | 0.9988 | 0.9980 | 0.9984 | 0.0012 | 0.0020 | FTP-patator | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | DoS slowloris | 0.9955 | 0.9941 | 0.9948 | 0.0045 | 0.0059 | DoS slowhttptest | 0.9962 | 0.9946 | 0.9954 | 0.0038 | 0.0054 | SSH-patator | 1.0000 | 0.9975 | 0.9988 | 0.0000 | 0.0025 | Bot | 1.0000 | 0.9979 | 0.9990 | 0.0000 | 0.0021 | Infiltration | 1.0000 | 0.8889 | 0.9412 | 0.0000 | 0.1111 | Heartbleed | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | Web attack | 0.9925 | 0.9907 | 0.9916 | 0.0075 | 0.0093 |
| Accuracy | | | | | 0.9979 | Macro avg | 0.9973 | 0.9892 | 0.9930 | 0.0027 | 0.0108 | Weighted avg | 0.9980 | 0.9979 | 0.9979 | 0.0020 | 0.0021 |
|
|