Research Article
Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning
Table 11
Classification performance of the sampled dataset with the random sampling algorithm.
| | Precision | Recall | F1 score | FNR | FPR |
| Random sampling layer1 | Benign | 0.9993 | 0.9981 | 0.9987 | 0.0007 | 0.0019 | Abnormal | 0.9981 | 0.9993 | 0.9987 | 0.0019 | 0.0007 |
| Accuracy | | | | | 0.9987 | Macro avg | 0.9987 | 0.9987 | 0.9987 | 0.0013 | 0.0013 | Weighted avg | 0.9987 | 0.9987 | 0.9987 | 0.0013 | 0.0013 |
| Random sampling layer2 | Benign | 0.9993 | 0.9981 | 0.9987 | 0.0007 | 0.0019 | DoS hulk | 0.9850 | 0.9992 | 0.9921 | 0.0150 | 0.0008 | DDoS | 0.9992 | 0.9996 | 0.9994 | 0.0008 | 0.0004 | PortScan | 1.0000 | 0.9984 | 0.9992 | 0.0000 | 0.0016 | DoS goldeneye | 0.9980 | 0.9972 | 0.9976 | 0.0020 | 0.0028 | FTP-patator | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | DoS slowloris | 0.9948 | 0.9941 | 0.9944 | 0.0052 | 0.0059 | DoS slowhttptest | 0.9962 | 0.9946 | 0.9954 | 0.0038 | 0.0054 | SSH-patator | 1.0000 | 0.9963 | 0.9981 | 0.0000 | 0.0037 | Bot | 0.9979 | 0.9979 | 0.9979 | 0.0021 | 0.0021 | Infiltration | 1.0000 | 0.7778 | 0.8750 | 0.0000 | 0.2222 | Heartbleed | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | Web attack | 0.9944 | 0.9869 | 0.9906 | 0.0056 | 0.0131 |
| Accuracy | | | | | 0.9977 | Macro avg | 0.9973 | 0.9800 | 0.9876 | 0.0027 | 0.0200 | Weighted avg | 0.9978 | 0.9977 | 0.9977 | 0.0022 | 0.0023 |
|
|