Research Article

Network Traffic Classification Based on SD Sampling and Hierarchical Ensemble Learning

Table 11

Classification performance of the sampled dataset with the random sampling algorithm.

PrecisionRecallF1 scoreFNRFPR

Random sampling layer1
Benign0.99930.99810.99870.00070.0019
Abnormal0.99810.99930.99870.00190.0007

Accuracy0.9987
Macro avg0.99870.99870.99870.00130.0013
Weighted avg0.99870.99870.99870.00130.0013

Random sampling layer2
Benign0.99930.99810.99870.00070.0019
DoS hulk0.98500.99920.99210.01500.0008
DDoS0.99920.99960.99940.00080.0004
PortScan1.00000.99840.99920.00000.0016
DoS goldeneye0.99800.99720.99760.00200.0028
FTP-patator1.00001.00001.00000.00000.0000
DoS slowloris0.99480.99410.99440.00520.0059
DoS slowhttptest0.99620.99460.99540.00380.0054
SSH-patator1.00000.99630.99810.00000.0037
Bot0.99790.99790.99790.00210.0021
Infiltration1.00000.77780.87500.00000.2222
Heartbleed1.00001.00001.00000.00000.0000
Web attack0.99440.98690.99060.00560.0131

Accuracy0.9977
Macro avg0.99730.98000.98760.00270.0200
Weighted avg0.99780.99770.99770.00220.0023